Magnetic Field 1D Methods
Note
- SI Units with the Sommerfeld convetion are used for this discussion: \(\mathbf{B} = \mu_0 \left( \mathbf{H} + \mathbf{M} \right)\)1
- However, the Kennelly Convetion is used for the creation of each magnet object in the library: \(\mathbf{B} = \mu_0\mathbf{H} + \mathbf{J}\)1
- In free space \(\mathbf{B} = \mu_0 \mathbf{H}\)
- In magnetised bodies, the demagnetising field \(\mathbf{H_d} = - N \mathbf{M}\), where \(N\) is the demagnetising factor.
Cylinder
The magnetic field directly above the centre of a cylinder is2:
\[
B_z = \frac{\mu_0 M_r}{2} \left[ \frac{z+L}{\sqrt{(z+L)^2 + R^2} } - \frac{z}{\sqrt{z^2 + R^2}} \right]
\]
Cuboid
While for a cuboid, this equation is:
\[
B_z = \frac{\mu_0 M_r}{2} {\left[ \tan^{-1}{\left(
\frac{(z+L)\sqrt{a^2 + b^2 + (z+L)^2} }{ab}
\right)} - \tan^{-1}{\left( \frac{z\sqrt{a^2 + b^2 + z^2} }{ab}
\right)}
\right]}
\]