Skip to content

2D Magnets

Note

  • SI Units with the Sommerfeld convetion are used for this discussion: \(\mathbf{B} = \mu_0 \left( \mathbf{H} + \mathbf{M} \right)\)1
  • However, the Kennelly Convetion is used for the creation of each magnet object in the library: \(\mathbf{B} = \mu_0\mathbf{H} + \mathbf{J}\)1
  • In free space \(\mathbf{B} = \mu_0 \mathbf{H}\)
  • In magnetised bodies, the demagnetising field \(\mathbf{H_d} = - N \mathbf{M}\), where \(N\) is the demagnetising factor.

For infinitely long objects, the field problems can be approximated in 2D, where the magnet field consists of:

\[ \mathbf{B} = B_x \mathbf{\hat{x}} + B_y\mathbf{\hat{y}} \]

Rectangles

2D Magnet Rectangle

The magnetic field due to rectangle magnetised in \(y\) is2:

\[ B_x = \frac{\mu_0 M_r}{4\pi} \left[\ln {\left( \frac{{\left(x+a\right)}^2 + {\left(y-b\right)}^2}{{\left(x+a\right)}^2 +{\left(y+b\right)}^2} \right)} -\ln{\left( \frac{{\left(x-a\right)}^2+{\left(y-b\right)}^2}{ {\left(x-a\right)}^2 + {\left(y+b\right)}^2} \right)}\right] \]
\[ B_y = \frac{\mu_0 M_r}{2\pi} \left[{\tan}^{-1}{\left( \frac{2b \left(x+a\right)}{y^2-b^2+{\left(x+a\right)}^2} \right)} - {\tan}^{-1}{\left(\frac{2b\left(x-a\right)}{y^2-b^2+{\left(x-a\right)}^2}\right)}\right] \]

or magnetised in \(x\) is:

TODO:

\[ B_x = \frac{\mu_0 M_r}{2\pi} [] \]
\[ B_y = \frac{\mu_0 M_r}{4\pi}[] \]

Biaxial Rods (Circle)

A long bipolar rod of radius \(a\) can be approximated as circular source. The magnetic stray field is most conveniently written in polar coordinates, as2:

\[ \mathbf{B} = \frac{\mu_0 M_r}{2} \left( \frac{a^2}{r^2}\right) \left[ \cos(\phi) \mathbf{\hat{r}} + \sin(\phi) \mathbf{\hat{\phi}} \right] \]

  1. J. M. D. Coey, Magnetism and Magnetic Materials (Cambridge University Press, 2010). 

  2. E. P. Furlani, Permanent Magnet and Electromechanical Devices (Academic Press, San Diego, 2001).